
minos “Keep Up” Processing and Beam Data Acquisition

Robert Hatcher∗1, Arthur Kreymer1, and Rashid Mehdiyev2

1Fermi National Accelerator Laboratory
2University of Texas, Austin

August 5, 2013

1 Purpose

The minos “keep-up” processing stream uses the minos reconstruction and analysis code code to
produce sntp (standard ntuple) and dst (data summary tuples) files from the data in a timely
“near offline” fashion. This processing performs separate passes over the input files for beam and
cosmic triggers, but done as part of the same job unit (for bookkeeping and file handling purposes)
for each file. The reasons for doing this processing include:

• The processed data uses slightly out-of-date calibration, but the result is used by the calibra-
tion group as input into the generation of up-to-date calibration constants. These constants
are put into the database, after validation, for when a second pass of processing is done for
“physics” purposes.

• Results from this pass serve to provide data quality feedback on the MINOS detector per-
formance and used to identify problems that aren’t apparent from the immediate raw data
(online monitoring).

• The resulting dst files with fully reconstructed physics quantities are used to monitor the
beam performance in a manner not possible from the accelerator ACNet devices. For example,
changes to the neutrino energy spectrum was a primary indication of problems with target
degradation during the last run.

• The minos data is also used by minerva for track matching, as minos serves as their muon
spectrometer and thus for them to do full reconstruction (i.e. their own “keep-up”) they must
have these files.

It is desirable that the last three items get done with as little delay as feasible in order that
they serve their purpose.

∗rhatcher@fnal.gov

1

2 Data Sources

The data used to generate minos dst files comes from several sources:

• DAQ: this data stream is the readout of the detector proper; it includes triggers from both
the beam ($A9) and cosmic rays. Files (and run) boundaries are independent of any other
sources.

• DCS: the “slow control” stream reports informations such as magnet status, HV, and other
environmental statuses. These are used to determine if the detector was in a healthy state
and whether the results are reliable.

• SpillTiming: is an independent system of keeping track of beam spills by recording the
time of beam ($A9) signals as seen by the minos near dector hardware; these timestamps are
processed and put into the minos spilltimend database table for offline use. This system is
also responsible for sending spill time information to the minos far detector for triggering.

• Beam: provides information about individual beam spills; primary quantities include “proton-
on-target” information and values used to determine spill quality (e.g. targetting informa-
tion). This data stream records all the available information and some of the device quantities
are manipulated (e.g. fitting to reduce swic and bpm arrays down to a few values) before
they are entered into the minos beammonspill database table.

Before the DAQ files are processed, minos requires that the other three sources have updated
the database. In addition to checking that the relevant time period is covered, cross-checks are
made to ensure that the spilltimend and beammonspill tables have recorded the same number
of spills to within a specified tolerance.

2.1 Frequency and Latency

In the “low energy” minos-era numi running, “keep-up” processing was performed once a day, at
approximately 11:30pm local time for the daq files that were at least 5 hours old. The desire for
the future is to perform this processing three times daily. The higher intensity and higher energy of
the beam means that plots that required 24 hours of data to get reasonable statistics could be made
more fequently. The plan is to have the database tables filled covering the 8 hour periods starting
at 00:00, 08:00, 16:00 UTC. How long after each of those periods one must wait before beginning
processing is, at this time, probably determined by the beam data stream. The spill time stream
will be updated hourly with a latency of no more than 15 minutes. The DCS frequency/latency is
under investigation.

The minos understanding of acquiring the beam data is that normally the data will be available
in the “historical” ifbeam database[1][3] within a few minutes after the actual spill. If one takes
a conservative approach of not attempting to get spill information that happened in the previous
15 minutes, and that acquiring 8 hours of data and processing it into the beammonspill database
table takes no more than 90+15 minutes, then “keep-up” processing for 00:00, 08:00, 16:00 UTC
time periods should begin no earlier than 02:00, 10:00, 18:00 UTC respectively.

2

3 Beam Data Acquisition

Prior to the new ifbeam system (2005-2012), minos used the xml-rpc interface to get the device
data from the accelerator division’s ACNet system. A list of devices was supplied and the xml-rpc
system would return the data to the bdp process which would write the data to a .mbeam file. Each
record contained all the available device information for a given trigger ($A9). The bdp wrote a
new .mbeam files for every 8 hours (00:00, 08:00, 16:00 UTC).

The .mbeam files were then processed though a standard minos job to summarize the data and
make beammonspill database entries. This involves a variety of cross checks and data manipulation
(fitting, etc) on a number of devices. Exactly which devices are necessary for this procedure is
scattered amongst the code, though with some detailed code inspection and perhaps some empirical
tests it is possible to determine a minimal device list for this processing. These two steps are shown
in Figure 1.

The approach minos has taken, publicly discussed as early as 2013-01-17[2], is to continue to
create .mbeam files of exactly the same format and leave the downstream portion of the processing
unmodified. This left the experiment only to have to write a new front-end to the process that
formats and writes the files.

3.1 Beam Data Size

There is no minos data storage rationale for trimming the device list from that of all possible
devices. The total storage for beam data from roughly 500 devices covering the years 2005 through
2012 is less than 1 TB in total. The .mbeam files are compact in the structure and compressed as
they are being written. The drawback is that data from these files that isn’t summarized into the
beammonspill database table can only be extracted by using the minos C++ framework. Access
to the data under that system isn’t hard and examples exist, but it is a potential barrier and can
be inconvenient. The sum of the beammonspill summary data takes up roughly 12 GB in the
database.

3.2 Beam Data Failure Modes

Near the end of the previous data taking run the xml-rpc system started suffering from a few
failure modes. Some data was lost due to incorrect network traffic shaping or outages. Other data
was partially lost when an individual device’s readback failed and the remained of the devices in
the list would not proceed until the device timed out – this lead to some instances where most of
every other spill’s information was lost.

In the xml-rpc system once data for a spill was not returned by the system, it was generally
lost forever. minos ran a parallel secondary bdp process for redundancy, and on a few occassions
some spills were recovered by extracting what was possible from the primary ACNet system.

The new ifbeam database approach limits these failures modes by making the the network
administrators aware of this the critcal traffic, having redundancy in the system, and using a
system where if one device hangs up other device reads are unaffected.

But with these improvements comes some uncertainty about whether the accessible data is
up-to-date. The experiment’s understanding is that this should, in normal operations, happen on
a time scale of less than 15 minutes. But also that based on the ifbeam database itself there can
be no indication that it is safe to read from it (no “high water mark”).

3

For keep-up processing a few missing spills (acceptable tolerance%?) is probably acceptable,
larger losses (whole periods of 5-10 minutes or more) would probably warrant holding off keep-up
processing until the data arrives. A cross check between spilltimend and beammonspill can’t be
used to avoid reading the ifbeam database, but it could hold off keep-up and force an investigation
into the mismatch. A spill counting pass over the ifbeam database could be made for comparison
with spilltimend before the pass to actually generate of the .mbeam file.

Until an alternative solution can be fielded, minos will probably run a second pass over the
ifbeam database 3 or 4 days later and use that to look for cases of data arriving late. A check
would be made that the two files have the same spills with the same number of devices read for
each spill. If there were a discrepancy, presumably because the later file had additional data, then
the new .mbeam file could replace the orignal and be reprocessed, otherwise it would be scrapped.

3.3 Beam Data Goals

[how to quantify any of this?]

• performance: the current system takes 10 minutes to acquire 1 hour’s worth of data; while
it is possible to run in that mode it seems that there should be possible optimizations that
could greatly improve this.

• latency: caused by the sync of the “historical” ifbeam database is a fundamental feature
of the design and can’t be avoided. In normal operations this is probably acceptable, but it
would be useful to have some firm number from the ifbeam database developers on what an
appropriate estimate of the latency is.

• lossage

– delayed data: this is data that is (initially) missed because it wasn’t available when
the ifbeam database was read. How to identify it? How to recover from it?

– lost data: this is data that just never will appear. How to signal that it isn’t simply
delayed?

4 Extra Notes

4.1 minerva

minos currently supplies minerva with the digested beam information and they have no immediate
plans for converting to the new system. Since minos “keep-up” processing will not proceed until
that is available, minerva might be advised to now process any of their data that needs beam
information until the minos files covering the same time period are available.

4.2 Times

The time associated with any datum or data is not necessarily obvious. This is diagrammed in
Figure 2.

• spill: this should be the time of the actual spill, e.g. $A9; such actual times should be recorded
in the minos spilltimend database table independent of ifbeam database information.

4

• device: each device readback has an associated time; Phil Adamson’s nomenclature has this
as the “dae” (data acquisition event?) time.

• record: this is the time associated with a collection of ACNet data: the readout of multiple
devices for the same spill. Ideally this would be the same as the spill time, but at a minimum
it should serve as a proxy for the spill time and be close enough as to leave no ambiguity as
to which spill it is associated with.

In the old xml-rpc scheme it was close to the time of the callback, and thus delayed by 500
msec from $A9. The old code set it to the earliest “dae” time of all the devices.

In the new ifbeam database scheme, when using BeamFolder::GetTimeList() it is some
[criteria?] time associate with the collection. Allowed deviations from this time to be included
in the collection is adjustable, but by default 50 msec. Empirically, with that criteria, scatter
seems to be ±42 msec.

• content: for some devices that return more than one value there is a time embedded in the
content; this in PA’s nomenclature is the “vme” time.

5 Beam Data Action Items

1. Method for getting definitive spill times ($A9) for a period of time.

2. For any given time period what is the complete list of devices available to be retrieved.

3. Access to the data must be allow one to get all values for all devices for any given spill (i.e.
there should be some bundle that contains all devices).

4. Efficient method of looping over spill times trec (or, until item 1 is satisfied, some proxy
thereof) and getting all the data for that time. This must get the times in order and not split
relevant spill data over more than one time.

5. Investigate swic time skew between devtime “dae” time i.e. that associated with the de-
vice as an additional argument to bf.GetNamedVector(trec,devname,&devtime);, and the
“vme” time embedded in the returned vector (for swic devices this is garnered from unscaled
and combining elements 205-208).

References

[1] A. Norman, et. al. IFBeamData redmine project page.
https://cdcvs.fnal.gov/redmine/projects/ifbeamdata/wiki.

[2] minos Batch Group. minos Beam Processing redmine project page.
https://cdcvs.fnal.gov/redmine/projects/batch/wiki/MinosBeam.

[3] I. Mandrichenko, et. al. Implementation of Beam Conditions Database for Intensity Frontier
Experiments.
https://cd-docdb.fnal.gov:440/cgi-bin/ShowDocument?docid=4478.

5

https://cdcvs.fnal.gov/redmine/projects/ifbeamdata/wiki
https://cdcvs.fnal.gov/redmine/projects/batch/wiki/MinosBeam
https://cd-docdb.fnal.gov:440/cgi-bin/ShowDocument?docid=4478

Figure 1: minos action plan for adjusting to lost of xml-rpc protocol in acquiring the beam
data as described in Section 3 as publicly presented at 2013-01-17 meeting[2]. Diagram by Rashid
Mehdiyev based on white board drawings of Robert Hatcher.

1	

ACNET	

XML	
callback	

Roto	
rooter	

mbeam	
.root	

loon	 MINOS	
dB	

socket	

Fi@ng	 beam	 width,	
calibraEons,	
data	 reforma@ng	

Roto	
rooter	

IF	 	 dB	

Based	 on	 	
R.Hatcher’s	 scheme	

?	

6

Figure 2: minos xml-rpc time line, see Section 3.

Figure 3: minos .mbeam record structure as written by the bdp process.

7

	Purpose
	Data Sources
	Frequency and Latency

	Beam Data Acquisition
	Beam Data Size
	Beam Data Failure Modes
	Beam Data Goals

	Extra Notes
	minerva
	Times

	Beam Data Action Items

